Deep Reinforcement Learning (RL) has considerably advanced over the past decade. At the same time, state-of-the-art RL algorithms require a large computational budget in terms of training time to ...
A new technical paper titled “Hardware-Aware Fine-Tuning of Spiking Q-Networks on the SpiNNaker2 Neuromorphic Platform” was published by researchers at TU Dresden, ScaDS.AI and Centre for Tactile ...
Reinforcement learning is a subfield of machine learning concerned with how an intelligent agent can learn through trial and error to make optimal decisions in its ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results